

Mechanisms of Failure in Uniaxial Repeated Creep Test and the Relationship to Aggregate Packing

Nima Roohi Sefidmazgi, Ph.D. Green Asphalt Co. Hussain Bahia, Ph.D. University of Wisconsin-Madison

October 7, 2015 Ancona, Italy

Study Objectives

• Understand how pavement ruts evolves/develops/progresses.. Primary/Secondary / Tertiary .

Introduction: Asphalt Mixture Rutting Performance and Testing

- Rutting: Due to increasing number of heavy trucks
 - Densification

MARC

RESEARCH CENTER

Is Density Important?

 Targeting <u>density</u> (AV at Ndes)as indicator of performance is not effective: Mixes of the same air voids have very different performances

Aggregate structure characterization for asphalt mixtures

MARC ASPHALT RESEARCH CENTER

Aggregate skeleton characterization: Total Proximatly Length

Optimum number of sections *3D properties*

Effect of aggregate structure on rutting: *Samples*

Sieve Size mm

8

Finding: aggregate structure is very important: TPL correlated with FN

Mechanisms of Load Transfer and Failure in Asphalt Mixtures

* www.gespavements.com

FN-Aggregate Packing Relation

Total Proximity Zone Length (mm/100cm²)

• How aggregate packing improves rutting failure in uniaxial FN?

Materials

Aggregate Packing Evolution and Density Throughout Loading :HMA

Evolution in Aggregate Packing and Density Throughout Loading

Evolution in Aggregate Packing and Density Throughout Loading

Mechanisms of Deformation in Primary, Secondary, and Tertiary Zone

- Based on network plots, density, and visualization :
 - Primary zone: Mainly densification & increase in packing
 - Secondary zone: Mainly shearing, aggregate skeleton starts deformation along the directions that show less confinement (i.e. outside of sample); aggregate skeleton is still, there is no rapid deformation or failure of sample.
 - Tertiary zone: High deformation in some part of aggregate skeleton (i.e. localized bulging of sample)
- Higher confinement, better aggregate packing \rightarrow delay tertiary zone

Effect of High Confinement: No Tertiary flow

Mix 2

Failure in SMA Mixture: Confinement in mastic

MARC

Loading Cycles

	SMA Neat	Air void %		SMA Fiber	Air void %		
	Load Cycles	Before Loading	After Loading	Load Cycles	Before Loading	After Loading	
	0	7.2	-	0	7.0	-	
	30	7.1	6.2	200	7.3	6.1	
	120	7.5	5.9	1000	7.1	5.7	
M	240	7.4	5.5	2000	7.5	5.5	Ŵ
CI	405	7.4	11.4	4300	7.3	10.3	

Failure in SMA Mixture: Unique behavior/less dependent on Skeleton

Effect of Aggregate Packing on Load Transfer Mechanism in AC

Stress distribution on continuous phase

-Multi-scale

MARC

CENTER

9.0

Which Mechanism is More Important?

MARC

RESEARCH CENTER

Highly packed mixtures \rightarrow Aggregate stability is main mechanism Lower Aggregate packing mixtures \rightarrow Stress distribution is main mechanism

Summary of Findings

- Load transfer mechanism includes:
 - Aggregate skeleton and
 - <u>mastic rheology</u>:
- Mixtures with higher packing(TPL>~2500mm/100cm²) aggregate particle stability is the main mechanism.
- <u>Confined testing showed no tertiary zone</u> \rightarrow No aggregate structure instability in confined condition
- Rutting:
 - Primary zone: Densification, increase in TPL
 - Secondary zone: TPL starts decreasing >> dilation of aggregate structure
 - Tertiary zone: Severe instability due to aggregate skeleton bulging (dilation)

What is next? Wheel Tracking

MODIFIED ASPHALT RESEARCH

CENTER

MARC

Acknowledgements

This research was sponsored by the Asphalt Research Consortium (ARC), which is funded by FHWA and MARC partners. This support is greatly appreciated.

Special Thanks to:

• RILEM TG2 members and friends

QUESTIONS?

<u>nroohi@GreenAsphaltCo.com</u> <u>bahia@engr.wisc.edu</u>

